
Comparing and Merging Documents
in
a Browser Using Oxygen Web Author

© 2023 Syncro Soft SRL. All rights reserved.

Bogdan Dumitru, Syncro Soft
bogdan_dumitru@oxygenxml.com

An Oxygen XML webinar

Top 8 Frameworks for Web Applications in 2025
● 1. Ruby on Rails
● 2. Django
● 3. Angular
● 4. ASP.NET
● 5. METEOR
● 6. Laravel
● 7. Express
● 8. Spring

Why Django?
● One of its defining philosophies is that it’s “batteries-included,” meaning

that Django comes with almost everything a developer needs out of the
box. This reduces the need for external libraries and simplifies the
development lifecycle.

● Ruby on Rails was also developed under this philosophy, however Python
is the more popular language with a lot more packages available, using
pip.

● ORM (Object-Relational Mapping)
● Authentication System
● Admin Interface
● URL Routing
● Templating Engine
● Forms and Validation
● Internationalization (i18n)

Some of the built-in features include:
● Security Features (CSRF, XSS,

SQL injection protection)
● Caching
● Middleware
● Testing Framework
● Sitemap Framework
● Session Management
● File Upload Handling

Let’s Get Started!
● To use the framework you need to install it, using:

● pip install Django
● To start a new project use:

● django-admin startproject <name for properties> <name of the project>
● To add the primary structure call:

● python manage.py startapp <name of the site>
● To start the newly created app just call:

● python manage.py runserver

Files Created
● These files are:
● manage.py: A command-line utility that lets you interact with this Django

project in various ways.
● settings.py: Settings/configuration for this Django project.
● urls.py: The URL declarations for this Django project.

Files Created
● asgi.py: An entry-point for ASGI(Asynchronous Server Gateway Interface)-

compatible web servers to serve your project.
Is a spiritual successor to WSGI, intended to provide a standard interface
between async-capable Python web servers

● wsgi.py: An entry-point for WSGI(Web Server Gateway Interface)-
compatible web servers to serve your project. See How to deploy with
WSGI for more details.
It is a specification that describes how a web server communicates with
web applications, and how web applications can be chained together to
process one request.

MVC VS MVT
● Model: Represents the data or

business logic of the application.
It manages the data and logic, and
updates the View when the data
changes.

● View: Represents the user
interface (UI) elements, typically
in the form of HTML.

● Controller: Acts as the
intermediary between the Model
and the View. It handles user
input, updates the Model and the
View.

● Model: Similar to MVC
● View: Is responsible for receiving

user input, processing it, and
returning an appropriate
response.

● Template: Is responsible for
rendering the HTML or UI
elements. It’s a file that defines
the structure and layout of the
output.

Files Created
● models.py: Defines the data models (i.e., database schema) for the app.

Each model maps to a single database table.
● admin.py: This file is used to register your models with the Django admin

site. Once registered, your models can be managed via Django’s built-in
admin interface.

● views.py: Contains the view functions or classes that control the logic for
handling web requests and returning responses (e.g., HTML pages).

● urls.py: Defines the URL patterns for the polls app. This connects views to
specific URLs, often included in the project's main.

● apps.py: Contains the configuration for the web app. This includes
metadata like the app name and can be customized for advanced app
configurations.

Entity-Relation Diagram

Models
● A model is the single, definitive source of information about your data. It

contains the essential fields and behaviors of the data you’re storing.
Generally, each model maps to a single database table.

● The basics:
● Each model is a Python class that subclasses django.db.models.Model.
● Each attribute of the model represents a database field.

● https://docs.djangoproject.com/en/5.2/topics/db/models/

https://docs.djangoproject.com/en/5.2/topics/db/models/

Models Fields
● A few field Types and arguments:

● CharField : maxLength = number
● DateField/DateTimeField : auto_now=True/False
● DecimalField : max_digits=number, decimal_places=number
● BooleanField
● AutoField/BigAutoField.
● ForeignKey/OneToOneField/ManyToManyField = class,

on_delete=models.CASCADE/SET_NULL/SET_DEFAULT
● https://docs.djangoproject.com/en/5.2/ref/models/fields/

https://docs.djangoproject.com/en/5.2/ref/models/fields/

Models Options
● Meta - Model metadata is “anything that’s not a field”, such as ordering

options (ordering), database table name (db_table), or human-readable
singular and plural names (verbose_name and verbose_name_plural).

● ex.

Models Option:
● __str__() - A Python “magic method” that returns a string representation

of any object. This is what Python and Django will use whenever a model
instance needs to be coerced and displayed as a plain string. Most notably,
this happens when you display an object in an interactive console or in
the admin.

● You’ll always want to define this method; the default isn’t very helpful at
all.

Database
● By default Django comes with SQLite, however it has support, by default,

for PostgreSQL and MySQL. It can be modified in settings.py

● To migrate our models to the database we need to add our apps
configuration in sources, as the following:

● <name_of_the_site>.apps.<name_of_the_class_created>

Database
● Django can create migrations for you. Make changes to your models - say,

add a field and remove a model - and then run
● python manage.py makemigrations

● Once you have your new migration files, you should apply them to
your database to make sure they work as expected - run:

● python manage.py migrate

Admin
● Creating an admin user:

● First we’ll need to create a user who can login to the admin site. Run
the following command:

– python manage.py createsuperuser
● The Django admin site is activated by default. Let’s start the

development server and explore it.
● To add the models to the admin site we need register the Model, in

admins.py

Views
● A view function, or view for short, is a Python function that takes a web

request and returns a web response. This response can be the HTML
contents of a web page, or a redirect, or a 404 error, or an XML document,
or an image . . . etc.

● ex.

Mapping a URL
● To display this view at a particular URL, it needs to be added to urls.py

Template
● A template contains the static parts of the desired HTML output as well as

some special syntax describing how dynamic content will be inserted.
● To initialize a Template location add a URL, in

settings.py/TEMPLATES/DIRS:
●

Template
● In Django, we use render(request, template_name, context) in views.py to

return an HTML template filled with data to the browser.
● ex.

Templates Language Syntax
● Variables:

● {{ <name_of_variable> }}
ex.
My first name is {{ name }}. My last name is {{ lastname }}.

● In order to use a variable we must use a dictionary.
● ex.

Templates Language Syntax
● {% if <condition> %}

...
{% else %}
...
{% endif %}

● {% for <item> in <list> %}
{{ <item> }}

{% endfor %}

Templates Static Files
● Websites generally need to serve additional files such as images,

JavaScript, or CSS. In Django, we refer to these files as “static files”. Django
provides django.contrib.staticfiles to help you manage them:

● In settings.py/INSTALLED_APPS include django.contrib.staticfile is
included in your .

● Define STATIC_URL, for example:

● For the template that uses static files, include
{% load static %}

Templates Static Files
● ex.

Queries
● Once you’ve created your data models, Django automatically gives you a

database-abstraction API that lets you create, retrieve, update and delete
objects.

● ex.
●

Queries operations
● save()
● objects.all()
● objects.filter(<condition>)

ex. Entry.objects.filter(blog_id=4)
● objects.get(<condition>)

ex. Entry.objects.get(headline__exact="Cat bites dog")
 Entry.objects.get(headline__contains=”Cat”)

CSRF Token
● CSRF, or Cross-Site Request Forgery, is a type of web security vulnerability

where an attacker tricks a user's browser into making unwanted actions
on a website the user is currently logged into.

● The CSRF middleware is activated by default in DJango in the
settings.py/MIDDLEWARE

● In any template that uses a POST form, use the csrf_token tag inside the
<form> element if the form is for an internal URL, e.g.:
<form method="post">{% csrf_token %}

REST(Representational State Transfer)
● It is a type of API (Application Programming Interface) that allows

communication between different systems over the internet. REST APIs
work by sending requests and receiving responses, typically in JSON
format, between the client and server.

● REST APIs use HTTP methods (such as GET, POST, PUT, DELETE) to define
actions that can be performed on resources. These methods align with
CRUD (Create, Read, Update, Delete) operations, which are used to
manipulate resources over the web.

Serializer
● A serializer is a tool or process that converts data structures (like objects

or complex data types) into a format suitable for storage or transmission,
such as JSON or XML.

● A deserializer is a tool or process that converts serialized data (like from a
file, network, or database) back into its original object or data structure in
memory

Django REST Framework
● REST functionality is not added by default from Django, however there is

a toolkit available thorough pip
● pip install djangorestframework

● Then, it settings.py we need configure the REST API
● ex.

Django REST Framework
● After, we need to serialize the information

ex.

● Then, create a View
ex.

Django REST Framework
● Some Web frameworks such as Rails provide functionality for

automatically determining how the URLs for an application should be
mapped to the logic that deals with handling incoming requests.

● REST framework adds support for automatic URL routing to Django, and
provides you with a simple, quick and consistent way of wiring your view
logic to a set of URLs.

RECAP
● Django as a a concept
● python manage.py runserver
● REST

Biblography:
● https://www.geeksforgeeks.org/blogs/top-frameworks-for-web-applicati

ons/
● https://medium.com/@naeem.ahmed.bdn/why-django-is-the-ultimate-b

atteries-included-framework-for-scalable-web-development-746ffcebaa7
d

● https://docs.djangoproject.com/en/5.2/intro/tutorial01/
● https://www.django-rest-framework.org/

https://www.geeksforgeeks.org/blogs/top-frameworks-for-web-applications/
https://www.geeksforgeeks.org/blogs/top-frameworks-for-web-applications/
https://medium.com/@naeem.ahmed.bdn/why-django-is-the-ultimate-batteries-included-framework-for-scalable-web-development-746ffcebaa7d
https://medium.com/@naeem.ahmed.bdn/why-django-is-the-ultimate-batteries-included-framework-for-scalable-web-development-746ffcebaa7d
https://medium.com/@naeem.ahmed.bdn/why-django-is-the-ultimate-batteries-included-framework-for-scalable-web-development-746ffcebaa7d
https://docs.djangoproject.com/en/5.2/intro/tutorial01/
https://www.django-rest-framework.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

